

Department of CSE Page 1

Data Representation
Data types, Complements, Fixed Point Representation, Floating Point

Representation.

Computer Arithmetic
 Addition and subtraction, multiplication Algorithms, Division

Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic unit,

Decimal Arithmetic operations.to CFG.

UNIT - III

Department of CSE Page 2

 Unit-III

Part-1: MICROPROGRAMMED CONTROL

Contents:

 Control memory

 Address Sequencing

 Microprogram Example

 Design of Control Unit

Introduction:

 The function of the control unit in a digital computer is to initiate sequence of microoperations.

 Control unit can be implemented in two ways

o Hardwired control

o Microprogrammed control

Hardwired Control:

 When the control signals are generated by hardware using conventional logic design techniques, the control

unit is said to be hardwired.

 The key characteristics are

oHigh speed of operation

oExpensive

oRelatively complex

oNo flexibility of adding new instructions

 Examples of CPU with hardwired control unit are Intel 8085, Motorola 6802, Zilog 80, and any RISC

CPUs. Microprogrammed Control:

 Control information is stored in control memory.

 Control memory is programmed to initiate the required sequence of micro-operations.

 The key characteristics are

o Speed of operation is low when compared with hardwired

oLess complex

oLess expensive

oFlexibility to add new instructions

 Examples of CPU with microprogrammed control unit are Intel 8080, Motorola 68000 and any CISC CPUs.

1. Control Memory:

 The control function that specifies a microoperation is called as control variable.

 When control variable is in one binary state, the corresponding microoperation is executed. For the other
binary state the state of registers does not change.

 The active state of a control variable may be either 1 state or the 0 state, depending on the application.

 For bus-organized systems the control signals that specify microoperations are groups of bits that select

the paths in multiplexers, decoders, and arithmetic logic units.
 Control Word: The control variables at any given time can be represented by a string of 1’s and 0's called a

control word.

 All control words can be programmed to perform various operations on the components of the system.
 Microprogram control unit: A control unit whose binary control variables are stored in memory is called a

microprogram control unit.

 The control word in control memory contains within it a microinstruction.

 The microinstruction specifies one or more micro-operations for the system.

 A sequence of microinstructions constitutes a microprogram.

 The control unit consists of control memory used to store the microprogram.

 Control memory is a permanent i.e., read only memory (ROM).

 The general configuration of a micro-programmed control unit organization is shown as block diagram below.

Department of CSE Page 3

 The control memory is ROM so all control information is permanently stored.

 The control memory address register (CAR) specifies the address of the microinstruction and the control data
register (CDR) holds the microinstruction read from memory.

 The next address generator is sometimes called a microprogram sequencer. It is used to generate the next

micro instruction address.
 The location of the next microinstruction may be the one next in sequence or it may be located somewhere

else in the control memory.

 So it is necessary to use some bits of the present microinstruction to control the generation of the address of

the microinstruction.

 Sometimes the next address may also be a function of external input conditions.
 The control data register holds the present microinstruction while next address is computed and read from

memory. The data register is times called a pipeline register.

 A computer with a microprogrammed control unit will have two separate memories: a main memory and a

control memory

 The microprogram consists of microinstructions that specify various internal control signals for execution of

register microoperations

 These microinstructions generate the microoperations to:

 fetch the instruction from main memory

 evaluate the effective address

 execute the operation

 return control to the fetch phase for the next instruction

2. Address Sequencing:

 Microinstructions are stored in control memory in groups, with each group specifying a routine.
 Each computer instruction has its own microprogram routine to generate the microoperations.

 The hardware that controls the address sequencing of the control memory must be capable of sequencing the

microinstructions within a routine and be able to branch from one routine to another

 Steps the control must undergo during the execution of a single computer instruction:
o Load an initial address into the CAR when power is turned on in the computer. This address is usually

the address of the first microinstruction that activates the instruction fetch routine – IR holds
instruction

o The control memory then goes through the routine to determine the effective address of the operand

– AR holds operand address
o The next step is to generate the microoperations that execute the instruction by considering the

opcode and applying a mapping process.

 The transformation of the instruction code bits to an address in control memory where the
routine of instruction located is referred to as mapping process.

o After execution, control must return to the fetch routine by executing an unconditional branch

 In brief the address sequencing capabilities required in a control memory are:

o Incrementing of the control address register.

o Unconditional branch or conditional branch, depending on status bit conditions.

o A mapping process from the bits of the instruction to an address for control memory.

o A facility for subroutine call and return.

Department of CSE Page 4

 The below figure shows a block diagram of a control memory and the associated hardware needed for
selecting the next microinstruction address.

 The microinstruction in control memory contains a set of bits to initiate microoperations in computer registers

and other bits to specify the method by which the next address is obtained.
 In the figure four different paths form which the control address register (CAR) receives the address.

o The incrementer increments the content of the control register address register by one, to select the

next microinstruction in sequence.

o Branching is achieved by specifying the branch address in one of the fields of the microinstruction.
o Conditional branching is obtained by using part of the microinstruction to select a specific status bit in

order to determine its condition.

o An external address is transferred into control memory via a mapping logic circuit.
o The return address for a subroutine is stored in a special register, that value is used when the

micoprogram wishes to return from the subroutine.

Conditional Branching:

 Conditional branching is obtained by using part of the microinstruction to select a specific status bit in order to

determine its condition.

 The status conditions are special bits in the system that provide parameter information such as the carry-out of
an adder, the sign bit of a number, the mode bits of an instruction, and i/o status conditions.

 The status bits, together with the field in the microinstruction that specifies a branch address, control the
branch logic.

Department of CSE Page 5

 The branch logic tests the condition, if met then branches, otherwise, increments the CAR.
 If there are 8 status bit conditions, then 3 bits in the microinstruction are used to specify the condition and

provide the selection variables for the multiplexer.

 For unconditional branching, fix the value of one status bit to be one load the branch address from control
memory into the CAR.

Mapping of Instruction:

 A special type of branch exists when a microinstruction specifies a branch to the first word in control memory
where a microprogram routine is located.

 The status bits for this type of branch are the bits in the opcode.

 Assume an opcode of four bits and a control memory of 128 locations. The mapping process converts the 4-bit
opcode to a 7-bit address for control memory shown in below figure.

 Mapping consists of placing a 0 in the most significant bit of the address, transferring the four

operation code bits, and clearing the two least significant bits of the control address register.

 This provides for each computer instruction a microprogram routine with a capacity of four microinstructions.

Subroutines:

 Subroutines are programs that are used by other routines to accomplish a particular task and can be called
from any point within the main body of the microprogram.

 Frequently many microprograms contain identical section of code.
 Microinstructions can be saved by employing subroutines that use common sections of microcode.

 Microprograms that use subroutines must have a provision for storing the return address during a subroutine

call and restoring the address during a subroutine return.

 A subroutine register is used as the source and destination for the addresses

3. Microprogram Example:

 The process of code generation for the control memory is called microprogramming.
 The block diagram of the computer configuration is shown in below figure.
 Two memory units:

 Main memory – stores instructions and data

 Control memory – stores microprogram

 Four processor registers

 Program counter – PC

 Address register – AR

 Data register – DR

 Accumulator register - AC

 Two control unit registers

 Control address register – CAR

 Subroutine register – SBR

 Transfer of information among registers in the processor is through MUXs rather than a bus.

Department of CSE Page 6

 The computer instruction format is shown in below figure.

 Three fields for an instruction:

 1-bit field for indirect addressing

 4-bit opcode

 11-bit address field

 The example will only consider the following 4 of the possible 16 memory instructions

 The microinstruction format for the control memory is shown in below figure.

Department of CSE Page 7

 The microinstruction format is composed of 20 bits with four parts to it

 Three fields F1, F2, and F3 specify microoperations for the computer [3 bits each]

 The CD field selects status bit conditions [2 bits]

 The BR field specifies the type of branch to be used [2 bits]

 The AD field contains a branch address [7 bits]
 Each of the three microoperation fields can specify one of seven possibilities.

 No more than three microoperations can be chosen for a microinstruction.

 If fewer than three are needed, the code 000 = NOP.
 The three bits in each field are encoded to specify seven distinct microoperations listed in below table.

 Five letters to specify a transfer-type microoperation

 First two designate the source register

 Third is a ‘T’

 Last two designate the destination register

AC ← DR F1 = 100 = DRTAC

 The condition field (CD) is two bits to specify four status bit conditions shown below

 The branch field (BR) consists of two bits and is used with the address field to choose the address of the

next microinstruction.

Department of CSE Page 8

 Each line of an assembly language microprogram defines a symbolic microinstruction and is divided into five

parts

1. The label field may be empty or it may specify a symbolic address. Terminate with a colon (:).

2. The microoperations field consists of 1-3 symbols, separated by commas. Only one symbol from each

field. If NOP, then translated to 9 zeros

3. The condition field specifies one of the four conditions

4. The branch field has one of the four branch symbols

5. The address field has three formats

a. A symbolic address – must also be a label

b. The symbol NEXT to designate the next address in sequence

c. Empty if the branch field is RET or MAP and is converted to 7 zeros
 The symbol ORG defines the first address of a microprogram routine.

 ORG 64 – places first microinstruction at control memory 1000000.

Fetch Routine:
 The control memory has 128 locations, each one is 20 bits.

 The first 64 locations are occupied by the routines for the 16 instructions, addresses 0-63.

 Can start the fetch routine at address 64.

 The fetch routine requires the following three microinstructions (locations 64-66).
 The microinstructions needed for fetch routine are:

 It’s Symbolic microprogram:

 It’s Binary microprogram:

Department of CSE Page 9

4. Design of control Unit:

 The control memory out of each subfield must be decoded to provide the distinct microoperations.

 The outputs of the decoders are connected to the appropriate inputs in the processor unit.

 The below figure shows the three decoders and some of the connections that must be made from their

outputs.

 The three fields of the microinstruction in the output of control memory are decoded with a 3x8 decoder to

provide eight outputs.

 Each of the output must be connected to proper circuit to initiate the corresponding microoperation as
specified in previous topic.

 When F1 = 101 (binary 5), the next pulse transition transfers the content of DR (0-10) to AR.

 Similarly, when F1= 110 (binary 6) there is a transfer from PC to AR (symbolized by PCTAR). As

shown in Fig, outputs 5 and 6 of decoder F1 are connected to the load input of AR so that when
either one of these outputs is active, information from the multiplexers is transferred to AR.

 The multiplexers select the information from DR when output 5 is active and from PC when

output 5 is inactive.

 The transfer into AR occurs with a clock transition only when output 5 or output 6 of the decoder is
active.

 For the arithmetic logic shift unit the control signals are instead of coming from the logical gates,

now these inputs will now come from the outputs of AND, ADD and DRTAC respectively.

Microprogram Sequencer:

 The basic components of a microprogrammed control unit are the control memory and the circuits that select

the next address.

 The address selection part is called a microprogram sequencer.
 The purpose of a microprogram sequencer is to present an address to the control memory so that a

microinstruction may be read and executed.

 The next-address logic of the sequencer determines the specific address source to be loaded into the control

address register.
 The block diagram of the microprogram sequencer is shown in below figure.
 The control memory is included in the diagram to show the interaction between the sequencer and the

memory attached to it.

 There are two multiplexers in the circuit.
o The first multiplexer selects an address from one of four sources and routes it into control address

register CAR.
o The second multiplexer tests the value of a selected status bit and the result of the test is applied to an

input logic circuit.

 The output from CAR provides the address for the control memory.

Department of CSE Page 10

 The content of CAR is incremented and applied to one of the multiplexer inputs and to the subroutine register

SBR.

 The other three inputs to multiplexer come from

o The address field of the present microinstruction

o From the out of SBR

o From an external source that maps the instruction

 The CD (condition) field of the microinstruction selects one of the status bits in the second multiplexer.

 If the bit selected is equal to 1, the T variable is equal to 1; otherwise, it is equal to 0.

 The T value together with two bits from the BR (branch) field goes to an input logic circuit.

 The input logic in a particular sequencer will determine the type of operations that are available in the unit.

 The input logic circuit in above figure has three inputs I0, I1, and T, and three outputs, S0, S1, and L.

 Variables S0 and S1 select one of the source addresses for CAR. Variable L enables the load input in SBR.

 The binary values of the selection variables determine the path in the multiplexer.
 For example, with S1,S0 = 10, multiplexer input number 2 is selected and establishes transfer path from SBR to

CAR.

 The truth table for the input logic circuit is shown in Table below.

 Inputs I1 and I0 are identical to the bit values in the BR field.

 The bit values for S1 and S0 are determined from the stated function and the path in the multiplexer that

establishes the required transfer.

 The subroutine register is loaded with the incremented value of CAR during a call microinstruction (BR =
01) provided that the status bit condition is satisfied (T = 1).

 The truth table can be used to obtain the simplified Boolean functions for the input logic circuit:

S1=I1

S0=I1I0+I’

1T L = I’1T

I0

Department of CSE Page 11

UNIT – III

PART – II - COMPUTER ARITHMETIC

Addition, subtraction, multiplication are the four basic arithmetic operations. Using these operations other
arithmetic functions can be formulated and scientific problems can be solved by numerical analysis methods.

Arithmetic Processor:

It is the part of a processor unit that executes arithmetic operations. The arithmetic instructions definitions

specify the data type that should be present in the registers used . The arithmetic instruction may specify binary or
decimal data and in each case the data may be in fixed-point or floating point form. Fixed point numbers may represent

integers or fractions. The negative numbers may be in signed- magnitude or signed- complement representation. The

arithmetic processor is very simple if only a binary fixed point add instruction is included. It would be more complicated

if it includes all four arithmetic operations for binary and decimal data in fixed and floating point representations.

Algorithm:

Algorithm can be defined as a finite number of well defined procedural steps to solve a problem. Usually, an
algorithm will contain a number of procedural steps which are dependent on results of previous steps. A convenient

method for presenting an algorithm is a flowchart which consists of rectangular and diamond –shaped boxes. The

computational steps are specified in the rectangular boxes and the decision steps are indicated inside diamond-shaped
boxes from which 2 or more alternate path emerge.

ADDITION AND SUBTRACTION:

3 ways of representing negative fixed point binary numbers:

1. Signed-magnitude representation---- used for the representation of mantissa for floating point operations by most

computers.

2. Signed-1’s complement

3. Signed -2’s complement—Most computers use this form for performing arithmetic operation with integers

Addition and subtraction algorithm for signed-magnitude data

Let the magnitude of two numbers be A & B. When signed numbers are added or subtracted, there are 4

different conditions to be considered for each addition and subtraction depending on the sign of the numbers. The

conditions are listed in the table below. The table shows the operation to be performed with magnitude(addition or

subtraction) are indicated for different conditions.

Department of CSE Page 12

The last column is needed to prevent a negative zero. In other words, when two equal numbers are subtracted, the

result should be +0 not -0.

The algorithm for addition and subtraction (from the table above):

Addition Algorithm:

When the signs of A and B are identical, add two magnitudes and attach the sign of A to the result. When the sign

of A and B are different, compare the magnitudes and subtract the smaller number from the larger. Choose the sign of the
result to be the same as A if A>B or the complement of sign of A if A < B. If the two magnitudes are equal, subtract B

from A and make te sign of the result positive.

Subtraction algorithm:

When the signs of A and B are different, add two magnitudes and attach the sign of A to the result. When the sign

of A and B are identical, compare the magnitudes and subtract the smaller number from the larger. Choose the sign of the

result to be the same as A if A>B or the complement of sign of A if A < B. If the two magnitudes are equal, subtract B

from A and make te sign of the result positive.

Hardware Implementation:
Let A and B are two registers that hold the numbers.

AS and BS are 2, flip-flops that hold sign of corresponding numbers.
The result is stored In A and AS .and thus they form Accumulator register. We need to
perform micro operation, A+ B and hence a parallel adder.

A comparator is needed to establish if A> B, A=B, or A<B.
We need to perform micro operations A-B and B-A and hence two parallel subtractor. An exclusive OR

gate can be used to determine the sign relationship, that is, equal or not.

Thus the hardware components required are a magnitude comparator, an adder, and two subtractors.

Reduction of hardware by using different procedure:
1. We know subtraction can be done by complement and add.

2. The result of comparison can be determined from the end carry after the subtraction.

We find An adder and a complementer can do subtraction and comparison if 2’s complement is

used for subtraction.

Department of CSE Page 13

Hardware forsigned-magnitude addition and subtraction AVF Add overflow

flip flop. It hold the overflow bit when A & B are added.

Flip flop E—Output carry is transferred to E. It can be checked to see the relative magnitudes of the two numbers.

A-B = A +(-B)= Adding a and 2’s complement of B.
The A register provides other micro operations that may be needed when the sequence of steps in the algorithm is

specified.

The complementer Passes the contents of B or the complement of B to the Parallel Adder depending on the state

of the mode control B. It consists of EX-OR gates and the parallel adder consists of full adder circuits. The M signal is

also applied to the input carry of the adder.

When input carry M=0, the sum of full adder is A +B. When M=1, S = A + B’ +1= A – B Hardware
algorithm:

Flow Chart for Add and Subtract operations:

The EX-OR gate provides 0 as output when the signs are identical. It is 1 when the signs are different.

A + B is computed for the following and the sum is stored in EA:

1. When the signs are same and addition operation is required.

2. When the signs are different and subtract operation is required.

The carry in E after addition indicates an overflow if it is 1 and it is transferred to AVF, the addoverflow flag

A-B = A+ B’+1 computed for the following:

1. When the signs are different and addition operation is required.

2. When the signs are same and subtract operation is required.

No overflow can occur if the numbers are subtracted and hence AVF is cleared to Zero. [the subtraction

of 2 n-digit un signed numbers M-N (N≠0) in base r can be done as follows:

1. Add minuend M to thee r’s complement of the subtrahend N. This performs M-N +rn .

2. If M ≥ N, The sum will produce an end carry rnwhich is discarded, and what is left is the result M-N.

3. If M< N, the sum does not produce an end carry and is equal to rn–(N-M), which is the r’s

complement of the sum and place a negative sign in front.] in A.

Department of CSE Page 14

A 1 in E indicates that A ≥ B and the number in A is the correct result.

If this number in A is zero, the sign AS must be made positive to avoid a negative zero.

A 0 in E indicates that A< B. For this case it is necessary to take the 2’s complement of the value

In the algorithm shown in flow chart, it is assumed that A register has circuits for micro

operations complement and increment. Hence two complement of value in A is obtained in 2, micro

operations. In other paths of the flow chart, the sign of the result is the same as the sign of A, so no

change in AS is required.

However When A < B, the sign of the result is the complement of original sign of A.
Hence The complement of AS stored in AS.

Final Result: AS A

Flow chart for ADD and Subtract operations

Addition and Subtraction with signed-2’s complement Data.:

Arithmetic Addition:

This method does not need a comparison or subtraction but only addition and complementation.
The procedure is as below:

1. Represent the negative numbers in 2’s complement form.

Department of CSE Page 15

2. Add the two numbers including the sign bits and discard any carry out of sign bit position.

3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign bit or if there is a no
carry into sign bit and a carry out of sign bit. Otherwise it is set to zero.

4. If the result is negative, take the 2’s complement of the result to get a correct negative result.

Arithmetic Subtraction:

1. Represent the negative numbers in 2’s complement form.
2. Take the 2’s complement of the subtrahend including the sign bit and add it to the minuend including the

sign bit.

3. The overflow bit V is set to 1 if there is a carry into sign bit and no carry out of sign bit or if there is a no carry

into sign bit and a carry out of sign bit. Otherwise it is set to zero.

4. Discard the carry out of the sign bit position.

Note: A subtraction operation can be changed to an addition operation if the sign of the subtrahend is changed.

Hardware for Signed 2/s complement for addition/ subtractioin

Algorithm For Adding And Subtracting Numbers In Signed -2's Complement Representation

MULTIPLICATION ALGORITHM:

Hardware implementation of multiplication of numbers in signed – magnitude form:

Department of CSE Page 16

register. A adder is provided to add two binary numbers and the partial product is accumulated in a

1. Instead of shifting the multiplicand to the left, the partial product is shifted to the right, which

result in leaving the partial product and the multiplicand in the required relative positions.

2. When the corresponding bit of the multiplier is zero, there is no need to add all zeros to the

partial product, since it will not alter it’s value.

The hardware consists of 4 flipflops, 3 registers, one sequence counter , an adder and complementer.

Hardware For Multiply Operation Q register&QS

flip flop: contains multiplier & Its sign

Sequence counter: It is set to a value equal to the number of bits in the multiplier

B Register& BS flipflop: It contains the multiplicand,& its sign
A Register, E Flip flop: Initialized to ‘ 0’. AS denotes sign of partial product

EA Register: hold partial product, with carry generated in addition being shifted to E .
Qn: Rightmost bit of the multiplier; AQ : will contain the final product.

As AQ represent product register, both AS QSrepresent the sign of the partial product or product.
The number to be multiplied are stores in memory as n bit sign magnitude numbers and when transferred to

register msb bit go to sign flipflop and remaining n-1 bits go to registers. Hence SC is initially set to n-1.

Let the lower order bit of the multiplier in Qntested.

If it is 1, the multiplicand in B is added to the present partial product in A.
If it is a ‘0’, nothing is done. Register EAQ is then shifted once to the right to form the new partial product. The

sequence counter is decremented by 1 and it’s new value checked. If it is not equal to zero, the process is repeated

and a new partial product is formed. The process stops when SC = 0.

The final product is available in both A and Q, with A holding the most significant bits and Q holding the least

significant bits.

Department of CSE Page 17

Fig: Flowchart for multiply operation

Multiplicand B=

10111

E A Q SC

Multiplier in Q 0 00000 10011 101
Qn =1;add B 10111

First Partial Product 0 10111

Shift Right EAQ 0 01011 11001 100

Qn =1;add B 10111
Second Partial Product 1 00010

Shift Right EAQ 0 10001 01100 011

Qn =0; Shift Right

EAQ

0 10001 01100 011

Qn =0; Shift Right

EAQ

0 01000 10110 010

Department of CSE Page 18

Qn =1;add B
Fifth Partial Product

Shift Right EAQ

0
0

10111

11011
01101

10101

000

Final Product in AQ
AQ = 0110110101

Numerical Example for the above algorithm

Booth Multiplication Algorithm:
Multiplication of signed- 2’s complement integers:

This algorithm uses the following facts.

1. A string of 0’s in the multiplier requires no addition but just shifting.

2. A string of 1’s in the multiplier from bit weight 2k to weight 2m can be treated as 2k+1 - 2m.

Example: Consider the binary number: 001110 (+14)

The number has a string of 1’s from 23 to 21 . Hence k = 3 and m= 1. As other bits are 0’s, the number can be
represented as 2k+1 - 2m = 24 – 21 = 16-2 = 14. Therefore the multiplication M * 14 , where M is the multiplicand and 14

the multiplier can be done as Mx 24 –M x 21.

This can be achieved by shifting binary multiplicand M four times to the left and subtracting M shifted left once

which is equal to (Mx 24 –M x 21.).

Shifting and addition/subtraction rules for multiplicand in Booth’s Algorithm:
1. The multiplicand is subtracted from the partial product upon encountering the first least significand 1 in

a string of I’s in the multiplier.

2. The multiplicand is added to the partial product upon encountering the first 0 (provided that there was

a previous 1)in a string of 0’s in the multiplier.

3. The partial product does not change when the multiplier bit is identical to the previous multiplier bit

Hardware Implementation of Booth Algorithm
Note: Sign bit is not separated from register. QR register contains the multiplier register and Qnrepresent the least

significant bit of the multiplier in QR. Qn+1 is an extra flip flop appended to QR to facilitate a double bit inspection of

the multiplier.

AC register and appended Qn+1 are initially cleared to 0.
Sequence counter Sc is set to the number n which is equal to the number of bits of bits In the multiplier.

QnQn+1 are to successive bits in the multiplier

QnQn+1 BR = 1011
,𝐵𝑅′+1 = 01001

AC QR Qn+1 SC

10 Initial 00000 10011 0 101

Department of CSE Page 19

= 10
𝑄𝑛𝑄𝑛+1

= 01

= 00

= 11

= 0 = 0
SC

END

ACAC+𝐵𝑅 +1
ACAC+B

ashr(AC & QR)

SC  SC-1

 Subtract BR

ashr

01001
01001

00100

11001

1

100

11 ashr 00010 01100 1 011

01 Add BR

ashr

10111
11001
11100

10110

0

010

00 ashr 11110 01011 0 001

10 Subtract BR

Ashr

01001
00111
00011

10101

1

000

Example for multiplication using Booth algorithm

Multiply

Algorithm in flowchart for multiplication of signed 2’s complement numbers

Mulitplicand in BR

Multiplier in QR

AC 0

𝑄𝑛+10

SC  n

Department of CSE Page 20

Array Multiplier:
2 -bit by 2- bit Array Multiplier:

Multiplicand bits are b1 and b0 .Multiplier bits are a1 and a0 .The first partial product is obtained by multiplying a0 by b1 b0 .

The bit multiplication is implemented by AND gate. First partial product is made by two AND gates. Second partial

product is made by two AND gates. The two partial products are added with two half adder circuits.

Fig: 2-bit by 2-bit array multiplier Combinational

circuit binary multiplier:

A bit of the multiplier is ANDed with each bit of the multiplicand in as many levels as there bits in the multiplier. The

binary output in each level of the AND gates is added in parallel with the partial product of the previous level to form a ne

partial product. The last level produces the product. For j multiplier and k multiplicand bits, we need j*k AND Gates and

(j-1)*k bit adders to ptoduce a product of j+k bits.
4- bit by 3-bit Array Multiplier:

Department of CSE Page 21

Fig: 4- bit by 3-bit Array Multiplier

DIVISION ALGORITHMS:

Division Process for division of fixed point binary number in signed –magnitude representation:

Fig: Example of Binary Division

Department of CSE Page 22

A

A Register E

Complementer and

Parallel adder

Sequence B Register

Let dividend A consists of 10 bits and divisor B consists of 5 bits.

1. Compare the 5 most significant bits of the dividend with that of divisor.

2. If the 5 bit number is smaller than divisor B, then take 6 bits of the dividend and compare with the

5 bit divisor.

3. The 6 bit number is greater than divisor B. Hence place a 1 for the quotient bit in the sixth position

above the dividend. Shift the divisor once to the right and subtracted from the dividend. The difference is

called partial remainder.

4. Repeat the process with the partial remainder and divisor. If the partial remainder is equal or

greater than or equal to the divisor, the quotient bit is equal to 1.The divisor is then shifted right and

subtracted from the partial remainder. If the partial remainder is small than the divisor, then the quotient bit

is zero and no subtraction is needed. The divisor is shifted once to the right in any case,.

Hardware Implementation of division for signed magnitude fixed point numbers:

To implement division using a digital computer, the process is changed slightly for convenience.

1. Instead of shifting the divisor to the right, the dividend or the partial remainder, is shifted to the left so as

to leave the two numbers in the required relative position.

2. Subtraction may be achieved by adding A (dividend)to the 2’s complement of B(divisor). The information

about the relative magnitude is then available from end carry.

3. Register EAQ is now shifted to the left with 0 inserted into Qn and the previous value of E is lost..

4. The divisor is stored in B register and the double length dividend is stored in registers A and Q.

5. The dividend is shifted to the left and the divisor is subtracted by adding it’s 2’s complement

value.

6. If E= 1, it signifies that A ≥ B.A quotient bit is inserted into Qnand the partial remainder is shifted to the

left to repeat the process.

7. If E = 0, it signifies that A < B so the quotient Qn remains 0(inserted during the shift). The value of B is

then added to restore the partial remainder in A to its previous value. The partial remainder is shifted to the

left and the process is repeated again until all 5 quotient bits are formed.

8. At the end Q contains the quotient and A the remainder. If the sign of dividend and divisor are alike, the

quotient is positive and if unalike, it is negative. The sign of the remainder is the same as dividend.

Q

0

Fig: Hardware for implementing division of fixed point signed- Magnitude Numbers

Q

A Register

Department of CSE Page 23

UNIT 3 - DATA REPRESENTATION

DATA TYPES:

• Registers contain either data or control information

• Control information is a bit or group of bits used to specify the sequence of command signals needed

for data manipulation

• Data are numbers and other binary-coded information that are operated on

• Possible data types in registers:

o Numbers used in computations

o Letters of the alphabet used in data processing

o Other discrete symbols used for specific purposes

• All types of data, except binary numbers, are represented in binary-coded form

• A number system of base, or radix, r is a system that uses distinct symbols for r digits

• Numbers are represented by a string of digit symbols

• The string of digits 724.5 represents the quantity

7 x 10
2

+ 2 x 10
1

+ 4 x 10
0

+ 5 x 10
-1

• The string of digits 101101 in the binary number system represents the quantity

1 x 2
5

+ 0 x 2
4

+ 1 x 2
3

+ 1 x 2
2

+ 0 x 2
1

+ 1 x 2
0

= 45

• (101101)
2
= (45)

10

• We will also use the octal (radix 8) and hexidecimal (radix 16) number systems

(736.4)
8
= 7 x 8

2

+ 3 x 8
1

+ 6 x 8
0

+ 4 x 8
-1

= (478.5)
10

(F3)
16

= F x 16
1

+ 3 x 16
0

= (243)
10

• Conversion from decimal to radix r system is carried out by separating the number into its integer and

fraction parts and converting each part separately

• Divide the integer successively by r and accumulate the remainders

• Multiply the fraction successively by r until the fraction becomes zero

Fig: conversion of decimal 41.6875 to binary

• Each octal digit corresponds to three binary digits

• Each hexadecimal digit corresponds to four binary digits

• Rather than specifying numbers in binary form, refer to them in octal or hexadecimal and reduce the

number of digits by 1/3 or ¼, respectively

Department of CSE Page 24

Fig: Binary, Octal and Hexadecimal Conversion

Table: Binary-Coded Octal Numbers

Department of CSE Page 25

Table: Binary-Coded Hexadecimal Numbers

•A binary code is a group of n bits that assume up to 2
n

distinct combinations

• A four bit code is necessary to represent the ten decimal digits – 6 are unused

• The most popular decimal code is called binary-coded decimal (BCD)

• BCD is different from converting a decimal number to binary

• For example 99, when converted to binary, is 1100011

• 99 when represented in BCD is 1001 1001

Department of CSE Page 26

•The standard alphanumeric binary code is ASCII

• This uses seven bits to code 128 characters

• Binary codes are required since registers can hold binary information only

COMPLEMENTS :

• Complements are used in digital computers for simplifying subtraction and logical manipulation

• Two types of complements for each base r system: r’s complement and (r – 1)’s complement

• Given a number N in base r having n digits, the (r – 1)’s complement of N is defined as (r
n

– 1) – N

• For decimal, the 9’s complement of N is (10
n

– 1) – N

• The 9’s complement of 546700 is 999999 – 546700 = 453299

The 9’s complement of 453299 is 999999 – 453299 = 546700

• For binary, the 1’s complement of N is (2
n

– 1) – N

• The 1’s complement of 1011001 is 1111111 – 1011001 = 0100110

Department of CSE Page 27

• The 1’s complement is the true complement of the number – just toggle all bits

• The r’s complement of an n-digit number N in base r is defined as r
n

– N

• This is the same as adding 1 to the (r – 1)’s complement

• The 10’s complement of 2389 is 7610 + 1 = 7611

• The 2’s complement of 101100 is 010011 + 1 = 010100

• Subtraction of unsigned n-digit numbers: M – N

o Add M to the r’s complement of N – this results in M + (r
n

– N) = M – N + r
n

o If M ≥ N, the sum will produce an end carry r
n

which is discarded

o If M < N, the sum does not produce an end carry and is equal to r
n

– (N – M), which is the r’s

complement of (N – M). To obtain the answer in a familiar form, take the r’s complement of

the sum and place a negative sign in front.

Example: 72532 – 13250 = 59282. The 10’s complement of 13250 is 86750.

M = 72352

10’s comp. of N = +86750

Sum = 159282

Discard end carry = -100000

Answer = 59282

Example for M < N: 13250 – 72532 = -59282

M = 13250

10’s comp. of N = +27468

Sum = 40718

No end carry

Answer = -59282 (10’s comp. of 40718)

Example for X = 1010100 and Y = 1000011

X = 1010100

2’s comp. of Y = +0111101

Sum = 10010001

Discard end carry = -10000000

Answer X – Y = 0010001

Y = 1000011

2’s comp. of X = +0101100

Sum = 1101111

No end carry

Answer = -0010001 (2’s comp. of 1101111)

FIXED-POINT REPRESENTATION :

• Positive integers and zero can be represented by unsigned numbers

• Negative numbers must be represented by signed numbers since + and – signs are not available, only

1’s and 0’s are

• Signed numbers have msb as 0 for positive and 1 for negative – msb is the sign bit

• Two ways to designate binary point position in a register

o Fixed point position

o Floating-point representation

• Fixed point position usually uses one of the two following positions

o A binary point in the extreme left of the register to make it a fraction

o A binary point in the extreme right of the register to make it an integer

o In both cases, a binary point is not actually present

• The floating-point representations uses a second register to designate the position of the binary point in

Department of CSE Page 28

the first register

When an integer is positive, the msb, or sign bit, is 0 and the remaining bits represent the magnitude

• When an integer is negative, the msb, or sign bit, is 1, but the rest of the number can be represented in

one of three ways

o Signed-magnitude representation

o Signed-1’s complement representation

o Signed-2’s complement representation

• Consider an 8-bit register and the number +14

o The only way to represent it is 00001110

• Consider an 8-bit register and the number –14

o Signed magnitude: 1 0001110

o Signed 1’s complement: 1 1110001

o Signed 2’s complement: 1 1110010

• Typically use signed 2’s complement

• Addition of two signed-magnitude numbers follow the normal rules

o If same signs, add the two magnitudes and use the common sign

o Differing signs, subtract the smaller from the larger and use the sign of the larger magnitude

o Must compare the signs and magnitudes and then either add or subtract

• Addition of two signed 2’s complement numbers does not require a comparison or subtraction – only

addition and complementation

o Add the two numbers, including their sign bits

o Discard any carry out of the sign bit position

o All negative numbers must be in the 2’s complement form

o If the sum obtained is negative, then it is in 2’s complement form

+6 00000110 -6 11111010 +13 00001101 +13 00001101

+19 00010011 +7 00000111

+6 00000110 -6 11111010

-13 11110011 -13 11110011

-7 11111001 -19 11101101

• Subtraction of two signed 2’s complement numbers is as follows

o Take the 2’s complement form of the subtrahend (including sign bit)

o Add it to the minuend (including the sign bit)

o A carry out of the sign bit position is discarded

• An overflow occurs when two numbers of n digits each are added and the sum occupies n + 1 digits

• Overflows are problems since the width of a register is finite

• Therefore, a flag is set if this occurs and can be checked by the user

• Detection of an overflow depends on if the numbers are signed or unsigned

• For unsigned numbers, an overflow is detected from the end carry out of the msb

• For addition of signed numbers, an overflow cannot occur if one is positive and one is negative – both

have to have the same sign

• An overflow can be detected if the carry into the sign bit position and the carry out of the sign bit

position are not equal

+70 0 1000110 -70 1 0111010

+80 0 1010000 -80 1 0110000

+150 1 0010110 -150 0 1101010

The representation of decimal numbers in registers is a function of the binary code used to represent

a decimal digit

• A 4-bit decimal code requires four flip-flops for each decimal digit

• This takes much more space than the equivalent binary representation and the circuits required to

Department of CSE Page 29

perform decimal arithmetic are more complex

• Representation of signed decimal numbers in BCD is similar to the representation of signed numbers in

binary

• Either signed magnitude or signed complement systems

• The sign of a number is represented with four bits

o 0000 for +

o 1001 for –

• To obtain the 10’s complement of a BCD number, first take the 9’s complement and then add one to

the least significant digit

• Example: (+375) + (-240) = +135

0 375 (0000 0011 0111 1010)
BCD

+9 760 (1001 0111 0110 0000)
BCD

0 135 (0000 0001 0011 0101)
BCD

FLOATING-POINT REPRESENTATION :

• The floating-point representation of a number has two parts

• The first part represents a signed, fixed-point number – the mantissa

• The second part designates the position of the binary point – the exponent

• The mantissa may be a fraction or an integer

• Example: the decimal number +6132.789 is

o Fraction: +0.6123789

o Exponent: +04

o Equivalent to +0.6132789 x 10
+4

• A floating-point number is always interpreted to represent m x r
e

• Example: the binary number +1001.11 (with 8-bit fraction and 6-bit exponent)

o Fraction: 01001110

o Exponent: 000100

o Equivalent to +(.1001110)
2
x 2

+4

• A floating-point number is said to be normalized if the most significant digit of the mantissa is nonzero

• The decimal number 350 is normalized, 00350 is not

• The 8-bit number 00011010 is not normalized

• Normalize it by fraction = 11010000 and exponent = -3

• Normalized numbers provide the maximum possible precision for the floating-point number

Other Binary Codes
• Digital systems can process data in discrete form only

• Continuous, or analog, information is converted into digital form by means of an analog-to-digital

converter

• The reflected binary or Gray code, is sometimes used for the converted digital data

• The Gray code changes by only one bit as it sequences from one number to the next

• Gray code counters are sometimes used to provide the timing sequences that control the operations in a

digital system

Department of CSE Page 30

Binary codes for decimal digits require a minimum of four bits

• Other codes besides BCD exist to represent decimal digits

Department of CSE Page 31

• The 2421 code and the excess-3 code are both self-complementing

• The 9’s complement of each digit is obtained by complementing each bit in the code

• The 2421 code is a weighted code

• The bits are multiplied by indicated weights and the sum gives the decimal digit

• The excess-3 code is obtained from the corresponding BCD code added to 3

Error Detection Codes
• Transmitted binary information is subject to noise that could change bits 1 to 0 and vice versa

• An error detection code is a binary code that detects digital errors during transmission

• The detected errors cannot be corrected, but can prompt the data to be retransmitted

• The most common error detection code used is the parity bit

A parity bit is an extra bit included with a binary message to make the total number of 1’s either odd

or even

The P(odd) bit is chosen to make the sum of 1’s in all four bits odd

• The even-parity scheme has the disadvantage of having a bit combination of all 0’s

• Procedure during transmission:

o At the sending end, the message is applied to a parity generator

o The message, including the parity bit, is transmitted

o At the receiving end, all the incoming bits are applied to a parity checker

o Any odd number of errors are detected

• Parity generators and checkers are constructed with XOR gates (odd function)

• An odd function generates 1 iff an odd number if input variables are 1

Department of CSE Page 32

	Unit-III
	Contents:
	Booth Multiplication Algorithm:
	UNIT 3 - DATA REPRESENTATION
	DATA TYPES:
	COMPLEMENTS :
	FIXED-POINT REPRESENTATION :
	FLOATING-POINT REPRESENTATION :
	Other Binary Codes
	Error Detection Codes

